RESULTS ON ALMOST COHEN-MACAULAY MODULES

Authors

  • A. Mafi Department of Mathematics, University of Kurdistan, P.O.Box 416, Sanandaj, Iran.
  • S. Tabejamaat Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran.
Abstract:

Let $(R,underline{m})$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on $M$ to be an almost Cohen-Macaulay module, by using $Ext$ functors.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Liaison with Cohen–Macaulay modules

We describe some recent work concerning Gorenstein liaison of codimension two subschemes of a projective variety. Applications make use of the algebraic theory of maximal Cohen–Macaulay modules, which we review in an Appendix.

full text

Results on Hilbert coefficients of a Cohen-Macaulay module

Let $(R,m)$ be a commutative Noetherian local ring, $M$ a finitely generated $R$-module of dimension $d$, and let $I$ be an ideal of definition for $M$. In this paper, we extend cite[Corollary 10(4)]{P} and also we show that if $M$ is a Cohen-Macaulay $R$-module and $d=2$, then $lambda(frac{widetilde{I^nM}}{Jwidetilde{I^{n-1}M}})$ does not depend on $J$ for all $ngeq 1$, where $J$ is a minimal ...

full text

Indecomposable Cohen-macaulay Modules and Their Multiplicities

The main aim of this paper is to find a large class of rings for which there are indecomposable maximal Cohen-Macaulay modules of arbitrary high multiplicity (or rank in the case of domains).

full text

Sequentially Cohen-macaulay Modules and Local Cohomology

Let I ⊂ R be a graded ideal in the polynomial ring R = K[x1, . . . , xn] where K is a field, and fix a term order <. It has been shown in [17] that the Hilbert functions of the local cohomology modules of R/I are bounded by those of R/ in(I), where in(I) denotes the initial ideal of I with respect to <. In this note we study the question when the local cohomology modules of R/I and R/ in(I) hav...

full text

Maximal Cohen-macaulay Modules over Hypersurface Rings

This paper is a brief survey on various methods to classify maximal Cohen-Macaulay modules over hypersurface rings. The survey focuses on the contributions in this topic of Dorin Popescu together with his collaborators.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  147- 150

publication date 2015-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023